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Abstract

For eachs € N define the constarfl; with the following properties: if an entire functiqq(z) of
typet(g) < 0, satisfies

¢ ez for6=0,1,...,s—1andz=0,1,2, ...,

theng is a polynomial; conversely, for any> 0 there exists an entire transcendental funcgian
satisfying the display conditin andg) < 05 + 6. The result); = log 2 is known due to Hardy and
Pélya. We provide the upper bourd < 7s/3 and improve earlier lower bounds due to Gelfond
(1929) and Selberg (1941).
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0. Introduction and statement of results

The famous theorem, due to Hardy and Pdélya, statesfthat entire functiong(z) of
(exponentialltype less thatog 2 takes integer values at= 0, 1,2, ..., theng(z) is a
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polynomial. Clearly, the condition on the type cannot be weakenedtia¢enscendental
function2¢ of typelog 2 is integer-valued for, = 0, 1, 2, .... Recall that the type of the
entire functionf (z) (of order 1) is defined by the formula

t(f) :=lim suplog|f|", where | f]|, := max|f(z)|.

r—+400 r lzl=

The result of Hardy and Pdélya was generalized by Gelfi@etl] to the case of entire
functions taking integer values together with their first 1 derivatives at non-negative
integers. A general problem may be regarded as follows: for eacl find the constant
0; > 0 with the following properties. If an entire functi@(z) satisfies

g9(Ng)cZ fore=0,1,...,s—1 (%)

andt(g) < 0y, theng is a polynomial; in opposite, for each> 0 there exists an entire
transcendentalunction g(z) satisfying (x) and (g) < 05 + 0.

By these means, the Hardy—Pdélya theorem as8ertslog 2, while Gelfond’s theorem
in [Gel] states the estimate

0, >slog(L+ e /%) > slog(1+ e 1) =5 -0.31326168.. fors=1,2,.... (1)

Later, Gelfond’s estimate was slightly improved by Sellj&e],

4 1 1
0p> |og<1+,/— + 5+ -) — 0.96907159. .
e e e
4 1 1
0y > =log(1+,/= + =5 + = ) =5-0.31654925.. fors=1.2,....
2 e2 et 2

The crucial ingredient in Selberg’s proof was a multidimensional analogue of the Euler beta
integral, known now as the Selberg intedr@AR, Chapter 8].

On the other hand, we have never heard of any reasonable upper bound for
0; whens > 1. The aim of our work is to fill the latter gap as well as to improve
the earlier (and rather old) estimates of Selberg. Namely, we prove the following two
theorems.

Theorem 1. For eachs € N there exists an entire transcendental functign(z)
satisfying

() ¢”@) czforc=0,1,...,s—1;

(ii) |gsl < exp{s(Er + 3 log r + c)} for each realr >1, wherec € R, denotes an effec-
tively computable absolute constant.

As a consequence, one has the upper béyrdys, which is expectedly worse than the
known result fors = 1: our theorem serves a less general class of entire functions, i.e.,
satisfying (i) instead of (x).

Remark 1. It should be noted that we may take

2  mz 1 .
g1(z) = —= sin— and g3(z) = - sinmnz

/3 3
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to ensure better estimates than in (ii) in the casesl1 and 3. But even in the case= 2
one can rather easily check that no simple linear combination of the type

sin 2nz + bcosznZ + c¢sin ne ercosnZ
a —_— — +cSin— —
3 3 3 3

with a, b, ¢, d € C, not all zero, is good fog.

Remark 2. In the assertion of Theorem 1 we can replace “there exists an” by “there exist
uncountably many” as we shall indicate in the proof.

Theorem 2.Lets € N and letg(z) be an entire function satisfyin@) andz(g) < 0,
where

0, = 0.99407702. ., 03 = 1.33990538. ., 0, = 1.67447461. .,
0s = 2.02210976. ., 0 = 2.36295435 . ., 0; = 2.70097297... (2
0g = 3.04484371. ., 09 = 3.38570755. . .

Theng(z) is a polynomial.
In general, the condition(g) < s - 0.32766348yieldsg(z) € C[z].

The interpolating technique is the main content in proofs of both theorems, but other
ingredients seem to be very different. The proof of Theorem 1 essentially uses ideas from
[BS] applied there to an analogogsproblem, while the proof of Theorem 2 exploits the
so-called group-structure arithmetic method introduced by Rhin and |RM&,RV2] for
proving new bounds of irrationality measures §¢2) and{(3). It is worth mentioning that
the arithmetic method allows us to get rid of the Selberg integral.

1. Proof of Theorem 1
1.1. Interpolation

We use ideas frorfBS], and choose the following interpolation sequetgg, =12,

0...,0,1,...,1, -1,...,-1,2,...,2, ...,
—_— — —— Y——
s times s times s times s times

i.e., foranyv € {(k —1)s+1,...,ks} andk € N, we have
k
2y = (—1>ka, ©)

where| - | stands for the integer part of a number. Therefore our interpolation polynomials
are given byP, (z) = [[)_1(z — zv), n € N; Py(z) being the constant polynomial 1. With
distinctws, ..., w; (wherel =[(n) = |n/s]), and exponentsy, ..., ¢; € N (atleast — 1

of which equals) satisfyinge1 + - - - + ¢, = n, we have

1
P =[] c—wp?. 4
=1
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The idea of this proof is to construct a transcendental fungtien= >, B, P,(z), which
is integer-valued at all integers and has small non-zero coefficknts

Let f(z) be an arbitrary entire function. The interpolation coefficieifs1 (n € N)
with respect to the above sequeri¢g),n are given by

A _ 1L f©d¢ 1 f(&)d¢
n-1=5— ==
27 P, (&) 2mi [T)1 (& — wy)e

1 e;— . f( - L/)(w/b) (€/+H/ 1)
S Sp TRl S | [ s S

=1 ¢,=0 (Hseees M)eNl =1
l’l+"'+“l=52+l‘ Veth

where the path of integration contains, ..., w;. Here the right-hand side is a linear
form in then derivativesf ™" (w;) with 2 € {1,...,1} andt; € {0,...,¢; — 1}. Their
coefficients are explicitly given rational numbers not depending .on
From now on, let us supposg = --- = ¢;_1 = s ande; € {1,...,s}. The factor of

Fe=Day)in (5)is (e, — )11 1_[1/1’_—11(w1 —w,) ™ and thus we have

-1

(e — 1) H (w —w;) Ap1
/-L/
e—1

-1
ZZ Za) f(Y 1- lt)(w))+2 a, f(et 1- N)(w)_|_f(€t 1)(wl)

= u=1

with rationala; ,, again independent gf. Next we inductively define, in the order indicated
below, an infinite sequende

81,00 -5 8151, 82,05 +-+>825-1s ~--s 81,0s---s8lej—1, --- (6)

of rational integers by the conditions

-1 s-1 e—1
0< Z Z a; u8l,s—1—pu + Z a u8l.e—1—u + gl,el—l< 1. )
A=1u=0 u=1

Clearly, forl = 1,¢; = 1 (i.e.n = 1) this meang1 o := 1. Herewith we put
1

(et — DTS (wr — wy)s
e—1

-1 s—1
X(Z Z A u8i,s—1—pu + Z aru8l,e;—1—u + gl,e;—l) (8)

=1 ﬂ:O ﬂ:l

By—1:=

for eachn € N. In particular, we remariB,_1 # 0 for eachm € N.

170 see the truth of Remark 2, having chosergal} in (6) arisingbeforeg; ., 1, we seleclg; ., —1 in such a
way that the sum in (7) satisfies0 |the sum[< 1. This leads to exactly two distinct choices fr,, 1.
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With theseB,,_1 we define

oo
gs(2) == Z B, 1P, 1(2)
n=1
and we assert that thjg is good for our theorem. Having shown thai{z) is entire and
satisfies (ii), clearly (i) is true as well singé“)(wi) =g € Zfori=1,2... and
we{0,1,...,s—1}. Since naB,_1 vanishesg, cannot be a polynomial.
To carry out this program we first estimagg_1 from (7), (8) and the postponed Lemma
1, leading to
-1
1Byl < [ 1w —wyl = = = 1. 9)
/=1
Next letk (= k(n)) be defined by 2 — 1 < [ <2k + 1 or, equivalentlyk := |//2]. From
our above choice of the interpolation sequefg and from (4) we deduce

! , ! 2\
e, 2 2 2\\S A
Pi1@ = [ G=wp% = @@=+ @==17)" [] (z—(—1> [ED (10
J=1 J=2k

with e, :=e; forA=1,...,1—1,ande; := ¢, — 1, cf. (3).

To get the precise estimate in (ii) we distinguish the two cases2k andl = 2k + 1.

Casel = 2k: From (9) and (10), using Stirling’s formula and the (again postponed)
Lemma 2, in the notation

k
O (r) = [ [+ 2, (11)
j=1
we find on|z| = r:

V2k e \* (r + k)
an Pnf , - ¢ N S—
|Br—1P-1(2)| < ( _27[(2]()2,() (r)y'r 21 K2y

Vi oy . k
<ﬁ4kk2k> exp{s(k log(r + k%) + 2r arctan—
k2 (r —|—k)"/2k
2+log( 1+ — S
+2+ OQ( + r2>>}r 21k

k K2\ (o + )
— —5/2p8/2 - — o
=n 5k’ eXp{srh<r> +2S+|Og<1+ r2> }rs(r2+k2)s'

(12)
Here the functiorh : Ry — R is defined by
h(t) :=tlog(l+ t‘z) —t log 4+ 2 arctant.

We computéei’(r) = Iog((l + t_z)/4) and this expression vanishesliy. exactly ifr =
1/4/3. We havei/(t) > 0if0 < t < 1//3 andh’(t) < 0 if r > 1/4/3. Moreover,
h(1//3) = 2 arctaril/v/3) = n/3,h(r) | Oast | 0, andh(t) | —oo ast 4 +oo.
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Thus, on|z| = r, we get from (12)
62
> Bic1Puc1(2) s:( ) exp(—sr) 1y K2 (13)
neN ﬁ neN

k<10r k<10

Since the sum on the right-hand side is less ttidn)1+5/2s, where the factor takes into
account that at mostdistinctn can lead to the sani€or k, in the case under consideration),
inequality (13) yields

Z By-1P,-1(2)

neN
k<10r

on|z| = r. Clearly,C1 > 0 can be written down explicitly.
We finally have to consider the contribution of thaseith £ > 10r. Starting again from
(12) we see

2 2 arctartk/r)
s/2 _
|By—1Pu—1(2)| < (\/_> k exp{vk(log<1+(k> ) log 4+2—k/r )}

<Cirt/? exp(gsr) (14

(r + k)2
X—
rS
114 \*
< (W) k32 exp(—sk), (15)
since
r\2 arctank/r) .
Iog<1+ (E) ) log 4+ 2= 77 < |og1—00 log 4+ F) — _1.06218476..

for thek’s under consideration. Sinée> 10r impliesk > 10 we deduce from (15)
|By—1P,—1(2)| < e_Sk/Z

on|z| = r if n is such that the correspondikgsatisfiesc > 10r. Thus we have

Z ananfl(Z)

neN
k>10r

This combined with (14) yields (ii) in Theorem 1 provided we are in the ¢as@k.
Thecasel = 2k + 1 will be left to the reader, the arguments being rather similar.

<5 Z e—sk/Z < 26_5S.
k>10

1.2. Postponed lemmas
Here we include two simple lemmas, which we used in the above proof.

Lemma 1.If w;, = (—=1)*|4/2] for A =1,2, ..., then
-1

[T —wil=a-1r
=1
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Proof. From the definition ofv; we see

o= 4] 52 -

fork=1,...,|1(—1)/2],and

| I I A VL Y
wr = wi1-2l = | 5 5 =3 > =

fork =1,...,|//2]. Both equalities together imply

-1 -1 -1
l_[ lwy —w,| = 1_[ lw; — wy| 1_[ lw; — wy|
=1 J=1 )=1

=l (mod 2 A#l (mod 2

=1 -1 (1-|!
2 | 21)
from which our assertion follows. ]
The following lemma is a variant of Lemma 2.8 in Welter's dissertgitge]. But whereas
Welter uses properties of tHefunction, our proof leans on simpler arguments, namely just

on partial summation.

Lemma 2.1f, for r € Ry andk € N, @, (r) is defined by11),then one has
2 9 k kN2
log @ (r) < klog(r© + k%) — 2k + 2r arctan— + 2+ log( 1 + (—) .
r r

Proof. By partial summation we get

2t dt

Iogd)k(r)—ZIog(r + j?) = klog(r® +k2)—/LJ s

j=1

k 24 k (1d
. 2 2 tedt t{t}dt
=klog(r® + k%) 2/ 2 /r2+t2,

1 1

where{t} :=t — |¢]. Thus,

k k
dr t{t}dr
2 2 2
log @ (r) = klog(r® + k%) — 2(k — 1) + 2r /r2+t2+2/ m
1 1

Since the first integral is bounded above%bwctan’ri, and the second by |<Qg+ (k/ r)2),
we get our inequality as asserted.]
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2. Proof of Theorem 2

2.1. Denominator lemma

Lets>2, and letay, as, ..., as; andby, by, ..., by be non-negative integers satisfying
the conditiona; < by for all subscriptsj, k = 1,2, ..., s. To these numbers we assign the
collectionN' = {b; —ax : j,k = 1,2,...,s}, in which all appearances of numbers are

counted with their multiplicities.
Define the rational function

N

(bi —a;)! I'(z—bj)
R@ =] p— - H (b — apl
j=1 (z—aj)z—aj—1)---(z—bj) F(z aj+1)
and consider its partial-fraction decomposition
oy
Ik
R&=3 3 I
iep 11 @0

whereP = {min a;, ..., maxb;} denotes the set of the poles Bfz) and{(k) stands for
the order of the pole at = k. By D,, denote the least common multiple of the numbers
1,2,...,n and setDg = 1 for completeness. The following result is a particular case of

[Ne, Proposition 4].

Lemma 3.Letny >ny>n3> - - - be the ordered version of the collectidh. Then,for all
k € P and any integef with 1 <1 <¢(k), we have the inclusion

DpyDyy -+ D, A € Z. (16)

Proof. We will show inclusion (16) in more general settings by requiring the para-
metersay, ..., a; andby, . . ., by to satisfy the inequalities; <b; for j = 1, ..., s only.
Clearlyny>nz> - -- >n,_1 >0, since atleastnumbers in\" are non-negativéi; —a; >0
forj =1,...,s.We proceed the proof by induction on the quantity ijl(bj —aj)=0.

The inductive base = 0 corresponds to the cagg = b; forall j =1, ...,s. We fix
k € {a1,...,as} andl <£(k), and assume (by rearranging the subscripts if necessary) that
As—q¢y+1 = - = ag = k,i.e,a; # kforj =1,2, ..., s0with so = s — £(k). The
standard procedure of determining the partial-fraction coefficients gives
1 d\ o
Ap=—"|— R _pt®
"= o =1 (dz> (R(2)(z = k)| _,

B 1 d )E(k)l( S0 1 )
GG —l)!(dz ,Ul e=a;) .

S DO e )

litHg=tk)—l j= 1
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It remains to note that forall =1, ..., sp we have
! 1 if k b
NG+ o+ +1 J o
(k - a]) J 1_[;0=soj+l (bi — aj)
1 (_1)lj+1 )
= ifk<b;=a;
NG+ o+ +1 J J
(k=aj)” iyt bj —an)

and the total amount of differencés— a;, b; — a; € N, required for each summand in
(17), is equal ton.O:l(lj +1)=4¢(k) — 1 +so=s —[<s— 1. This proves inclusion (16)
in the case: = 0.
If ¢ > 0, then the inequality; < b; holds for at least one subscriptfor j = 1, say.
Multiplying both sides of the identity
1— —a1 z-— b1
Cbhi—a1 bhi—a
by R(z), we obtain the relatiolR(z) = R(a1 + 1;7) — R(b1 — 1; z), where the records
a1 + 1 andb1 — 1 mean the changes of the corresponding parameters only. It can be easily
seen that the numbers in the collectigvigor the rational functions on the left-hand side of
the relation do not exceed the corresponding numbers in the colle¢tfonthe right-hand
side, but the value affor R(a1+1; z) andR(b1—1; z) isby 1 less than foR(z). Therefore,
we may apply the inductive step arguments to arrive at (16), and the lemma follaws.

The following fact will be rather important to us: the collectigf and the collection

{n1,n2,...,n,_1} of its s — 1 successive maxima are invariant under any rearrangement
of the parameters in the grodp, bo, . .., by (and/or in the groups, az, . . ., ay).
2.2. Settings

General shapes of interpolation polynomials are as follows (cf. Section 1):

On(z) = ]_[ (z—aj)z—aj—1)---(z— b)), 0n(2) | Ont1(2),
j=1
where degQ,, = n and alla;’s andb;’s are rational integers. lf5e, Hilfsatz I1], itis shown
thatif b; = O(n) asn — oo and the interpolation coefficients

I O {CO
C2nmi ] 0u(2)

vanish for alln >no, theng(z) is a polynomial. Moreover, it is sufficient to prove that
A,, = 0 for all v>vg, where the subsequenée,},—o.1... C Npg is sufficiently dense,
namely, O< n,41—n, <const. (Indeed, all analytic estimates for interpolation coefficients,
like (19) below, have such form thatlid,,, | < C, then|A,|<C for alln<n,.)

Letn be anincreasing parameter in the construction below. We fix the tuple of parameters
o= (a1,...,05) andp = (B4, ..., B,) satisfying the condition

n

ﬂj>ka>o forall 1<j,k<s
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and take
aj = o;n, bjzﬁjn, j=12...,s.

In these settings the total degree of the polynomial

0@ =[]G-apGc—a; =1 —b)

j=1

isY%_1(b; —aj+1)=n > i—1(B; — ;) + s, but since gaps of length.’_; (8; — «;)
are allowed, it is enough to show that
1
B, — 8
2ni J r, On(z)

vanishes fom >ng (that impliesg(z) € C[z]). HereI', denotes a contour with interior
including all zeros of the polynomia?,, (z).

2.3. Arithmetic part

In order to apply Lemma 3, take >v2> --- >v,;_1 to be the firsts — 1 successive
maxima in the collectio\” = {§; — o : 1< j, k<s} and setd,, = [[}Z] Dy, If

(B —apmt 5 % m
0n(2) 55 =
then allA;; are integers by Lemma 3. For any permutatioof the set{1, ..., m}, we set

(o) = [ ((Byj) — 2j)m)!

j=1

and use the group-structure arithmetic method in the following manner. Again from Lemma
3 and due to the symmetry of our construction it follows that, for anthe coefficients
Al(,f) in the decomposition

5 % A M) _ M) 5 % A
IRVl =TI EPAY]
iep s G0 Cn(@  Md) (= = =K
are integers. Therefore, if for each prime
I1(id)
wp = mo_aX{Ordpm} >0

andQ, = ]’[p p®r, then the coefficientd;, = Ale;1 in the decomposition

[T (B; = oj)n)! o) g
111y J . Tk
A"Qn 0n(2) - Z Z (z —k)l

keP =1
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are allintegers. For primgs> +/Cn (whereC = maxf;, say) the procedure of algorithmic
determiningw, is known: take

w(x) = mgx(z L(B; — aj)x] — Zl L(Bo(jy — ocjm); (18)
_ =
thenw, = w(n/p) (since org N! = | N/p] for any primep > +/N). The functiono(x) is
1-periodic and by application of the Chudnovsky—Rukhadze—Hata arithmetic scheme (see,
e.g.,[Zu, Lemma 4.4]), we get

lim

n—oo

1
'ognQ" - f () dY(x),

0
wherey(x) is the logarithmic derivative of the gamma function. On the other hand, the
prime number theorem yields
log D, .
lim 9 =v;, j=12...,5s-1

n—o00 n

Following the lines of the proof of Hilfsatz V ifSe, p. 166], we see that the numbers

B) = By(s — D', 2, [T ((B; — ajn)!

=1
i g(2) Z % - ! Alk dz = Z % A/ g(l—l)(k)
2mi (- 1)! lk

Iy keP =1 keP =1

are all integers sincé(k) <s for eachk € P.
2.4. Some ‘complex’ analysis
Takel', = {z : |z| = yn} for some constam> Yo = Max ﬂj > 0. Then

Ig(z)l Cinen
B, do < , 19
1Bal < 0.0 ?S70,0m) 19

wheref denotes the type of the entire functigr) (i.e., [g(z)| < Ce’Zl). By Stirling’s
asymptotic formula, we have

((B; —apn)! D= Bpm T —an+1)
(yn — ajn)(pn — ajn — 1)+~ (yn — B;n) I'((y—oj)n+1)
/—ﬁ/ _ ﬁ, i
~ Ca0), Bj. )n 1/2<(y b 0, a’) > . j=1.....s
(7 — o)™

asn — oo. Finally,
1

=1+ -+ v_1) —/ w(x) dy (x) + rgi? f),
X290
0

. log|B/
lim sup 918, | <
n

n—oo
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where

F@) = 00+ ((x—B;) log(x—P ) — (x—aj) log (x—a)+ (B —a;) log (B —a;)). (20)

j=1

If » < 0, we automatically obtaiB, = 0 (sinceB), € Z) and henceB, = 0 for all
sufficiently largen. The minimum of the functiory (x) is achieved at the point = xg,
which satisfiesf’(xg) = 0 with

f/x) =0+ dog(x — ;) —log(x — x;)).
j=1
For this pointx = xo we obtain
n;in fx) = f(xo) = folxo0),

X Z2%0
where

Jox) = f(x) —xf'(x)
=Y (olog(x — ;) — B;log(x — ;) + (B; — xj)log(B; — ;). (21)
j=1

Since

fé(x):Z<L_ ﬁj )Z_Z(ﬁj_—aj)x 0

X — o x—ﬁj o (X—Ocj)(X—ﬁj) =

for x >y, the functionfy(x) decreases for > y4. Suppose that we determine the (unique)
pointx = x1 > 7q such that

j=1

1
FolxD) = —(v1 + -+ 4 vo_1) + f () d (o).
0

Then taking

0=-Y (og(x1 — B;) —log(x1 — ;).
j=

1
we obtain that the conditiof < 6 yieldsx < O.

2.5. Proof of Theorem 2

Applying the above scheme for the cases- 2,3, ...,9, we get the valueg in (2)
corresponding to the following (optimal) tuples of the parameters:
s=2: (a; p) = (0, 1;9,10),

s=3: (; ) =(0,1,2;11,12,13),
s=4: (; p) =(0,1,2,3;,17,18,19,20),
s=5: (; p) =(0,1,2,3,4; 22, 23,24, 25,26),
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s =06: (a; p) = (0,1,2,3,4,5;27,28,29,30, 31,32),

s=7: (a; p) =(0,1,...,6;33,34,...,39),
s=28: (a; p) =(0,1,...,7;38,39,...,45),
s=9: (a; ) =(0,1,...,8;42,43,...,50.

Also note that Gelfond'’s estimate (1) correspondsto the cti@ig®) = (0,...,0;1,...,1)
in our notation.

To proceed with the second (generalsinassertion of Theorem 2, fix the collection
(a*; By = (oF, ..., o f1, ..., By, for somem > 2, with the additional restrictions

<< < fi < <P

Bi-oi= = f— o= 0 =2

to simplify the general consideration. Sét= f;, — o3, the functions/*(x) and f§ (x)
defined in (20) and (21) (with replaced byd*) for the collection(a*; *), and compute
the arithmetic functionso}(x) in (18) for the cut collectionsor, ..., o 7, ..., f)),

1 =0,1,...,m, respectively (so thabg(x) andwj(x) are identically zero) together with
the corresponding arithmetic contributions

1
];“:/a);‘(x)dl//(x), [=0,1,....,m
0

Assume also the condition

I
VoI -1, 1=0.1,....m (23)
m

(for I = O it clearly holds).
Our (close to optimal) choice of the collectign ) for anys>2 is as follows:

O(jzai(modm), ﬁj:ﬁj(modm) fOI’j=l,...,S

Write s = km + [, where 0</<m — 1. Clearly, we gev; <v*for j =1,...,s—1and
w(x) = ko, (x) + wj (x), and by (23)

1

4+ v5_1) — / o) dy(x) < (s — Lv* — (kI + 1) < %(mv* 1. (2%
0

Denote byxj > yg = max,Bj the unique solution of the equatigff (x) = —(mv* — ;)
and set

== (log(xj — B3) — log(x} — o})).
j=1

As we have already seen, the condititin< 0 implies

®*i=mv* — 7 + min f*(x) <O0. (25)

X270
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Restrictions (22) imply that for any real> y, the sequence of the real numbers
hj(x) = (x = f5)log(x — B7) — (x — ) log(x — o) + (B} — o) log (B — o)

increased with j = 1, ..., m. Therefore,
l I m i
Zl hj(0)<— Z; hj(0) = —(=0"x+ f*(0)) forx >y
J= J=

and, as a corollary,
FO<Z ) forx > o, (26)
m
provided that

0< o~ 27
m

Lemma 4. If two real functionsg1(x) and g2(x) satisfygy (x) < g2(x) forx € X ¢ Rand
both functions admit their minima aXx, then

min g1(x) < min ga(x).
xeX xeX

We omit the proof of this clear observation and write the following consequence of it and
relation (26):

. N .
min f(x)<— min f*(x),
X270 m x =y

hence by (24)

X 2%

1
w= (i) — / () Ay (x) + min £ () < " (28)
0

provided that (27) holds. Finally, from (25) and (28) we obtain thétsif%é*, thenx < 0
and hence (z) with 1(g) = 0< %f)* should be a polynomial.

The choice(a*, ) = (0,1,2,3,4; 39,40, 41,42, 43) givesv* = 43 and%é* =
0.32766348. .. This completes the proof of Theorem 2.

3. Concluding remarks
Problems similar to those considered in this work are also known in the case of entire
functions taking integer values with their derivatives at the paintsq”,n =0,1,2, .. ;

q € Z\ {0, £1} is fixed. The corresponding estimates from both below and above for a

2 Hint: prove that the function(f) = (x — f)log(x — f) — (x — f + u*)log(x — f§ + i*) increases withf
changing from 0 to; realx is fixed.
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g-analogue of the constafif were first established by Gelfond [@e2]. Later, the upper
bound was considerably improvedBS]. However, no results sharpening the lower bound
appeared, and we would like to conclude this paper by saying that-#malogue of the
arithmetic method used in the proof of Theorem 2 (including Selberg’s metH&e]as a
particular case) does not allow one to improve this lower bound.
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