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Abstract

For eachs ∈ N define the constant�s with the following properties: if an entire functiong(z) of
typet (g)< �s satisfies

g(�)(z) ∈ Z for � = 0, 1, . . . , s − 1 andz = 0, 1,2, . . . ,

theng is a polynomial; conversely, for any�> 0 there exists an entire transcendental functiong(z)

satisfying the display conditin andt (g)< �s + �. The result�1 = log 2 is known due to Hardy and
Pólya. We provide the upper bound�s � �s/3 and improve earlier lower bounds due to Gelfond
(1929) and Selberg (1941).
© 2004 Elsevier Inc. All rights reserved.

Keywords:Entire function; Integer-valued function; Polynomial interpolation; Group-structure arithmetic
method; Selberg integral

0. Introduction and statement of results

The famous theorem, due to Hardy and Pólya, states thatif an entire functiong(z) of
(exponential)type less thanlog 2 takes integer values atz = 0, 1,2, . . ., theng(z) is a
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polynomial. Clearly, the condition on the type cannot be weakened sincethe transcendental
function2z of typelog 2 is integer-valued forz = 0, 1,2, . . . . Recall that the type of the
entire functionf (z) (of order 1) is defined by the formula

t (f ) := lim sup
r→+∞

log |f |r
r

, where |f |r := max|z|=r
|f (z)|.

The result of Hardy and Pólya was generalized by Gelfond[Ge1] to the case of entire
functions taking integer values together with their firsts − 1 derivatives at non-negative
integers. A general problem may be regarded as follows: for eachs ∈ N find the constant
�s > 0 with the following properties. If an entire functiong(z) satisfies

g(�)(N0) ⊂ Z for � = 0, 1, . . . , s − 1 (∗)
andt (g) < �s , theng is a polynomial; in opposite, for each� > 0 there exists an entire
transcendentalfunctiong(z) satisfying (∗) andt (g) < �s + �.
By these means, the Hardy–Pólya theorem asserts�1 = log 2, while Gelfond’s theorem

in [Ge1]states the estimate

�s �s log(1+ e(1−s)/s) > s log(1+ e−1) = s · 0.31326168. . . for s = 1,2, . . . . (1)

Later, Gelfond’s estimate was slightly improved by Selberg[Se],

�2� log

(
1+

√
4

e
+ 1

e2
+ 1

e

)
= 0.96907159. . .

�s >
s

2
log

(
1+

√
4

e2
+ 1

e4
+ 1

e2

)
= s · 0.31654925. . . for s = 1,2, . . . .

The crucial ingredient in Selberg’s proof was amultidimensional analogue of the Euler beta
integral, known now as the Selberg integral[AAR, Chapter 8].
On the other hand, we have never heard of any reasonable upper bound for

�s when s > 1. The aim of our work is to fill the latter gap as well as to improve
the earlier (and rather old) estimates of Selberg. Namely, we prove the following two
theorems.

Theorem 1. For each s ∈ N there exists an entire transcendental functiongs(z)
satisfying
(i) g

(�)
s (Z) ⊂ Z for � = 0, 1, . . . , s − 1;

(ii) |gs |r � exp
{
s
(�
3r + 1

2 log r + c
)}
for each realr�1,wherec ∈ R+ denotes an effec-

tively computable absolute constant.

As a consequence, one has the upper bound�s � �
3s, which is expectedly worse than the

known result fors = 1: our theorem serves a less general class of entire functions, i.e.,
satisfying (i) instead of (∗).

Remark 1. It should be noted that we may take

g1(z) = 2√
3
sin

�z
3

and g3(z) = 1

�
sin�z
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to ensure better estimates than in (ii) in the casess = 1 and 3. But even in the cases = 2
one can rather easily check that no simple linear combination of the type

a sin
2�z
3

+ b cos
2�z
3

+ c sin
�z
3

+ d cos
�z
3

with a, b, c, d ∈ C, not all zero, is good forg2.

Remark 2. In the assertion of Theorem 1 we can replace “there exists an” by “there exist
uncountably many” as we shall indicate in the proof.

Theorem 2.Let s ∈ N and letg(z) be an entire function satisfying(∗) and t (g) < �̃s ,
where

�̃2 = 0.99407702. . . , �̃3 = 1.33990538. . . , �̃4 = 1.67447461. . . ,
�̃5 = 2.02210976. . . , �̃6 = 2.36295435. . . , �̃7 = 2.70097297. . . ,

�̃8 = 3.04484371. . . , �̃9 = 3.38570755. . . .

(2)

Theng(z) is a polynomial.
In general, the conditiont (g) < s · 0.32766348yieldsg(z) ∈ C[z].

The interpolating technique is the main content in proofs of both theorems, but other
ingredients seem to be very different. The proof of Theorem 1 essentially uses ideas from
[BS] applied there to an analogousq-problem, while the proof of Theorem 2 exploits the
so-called group-structure arithmetic method introduced by Rhin and Viola[RV1,RV2] for
proving new bounds of irrationality measures for�(2) and�(3). It is worth mentioning that
the arithmetic method allows us to get rid of the Selberg integral.

1. Proof of Theorem 1

1.1. Interpolation

We use ideas from[BS], and choose the following interpolation sequence(z�)�=1,2,...:

0, . . . ,0︸ ︷︷ ︸
s times

, 1, . . . ,1︸ ︷︷ ︸
s times

, −1, . . . ,−1︸ ︷︷ ︸
s times

, 2, . . . ,2︸ ︷︷ ︸
s times

, . . . ,

i.e., for any� ∈ {(k − 1)s + 1, . . . , ks} andk ∈ N, we have

z� = (−1)k
⌊
k

2

⌋
, (3)

where� · � stands for the integer part of a number. Therefore our interpolation polynomials
are given byPn(z) = ∏n

�=1(z − z�), n ∈ N; P0(z) being the constant polynomial 1. With
distinctw1, . . . , wl (wherel = l(n) = �n/s�), and exponentse1, . . . , el ∈ N (at leastl −1
of which equals) satisfyinge1 + · · · + el = n, we have

Pn(z) =
l∏

�=1

(z − w�)
e� . (4)



P. Bundschuh, W. Zudilin / Journal of Approximation Theory 130 (2004) 162–176 165

The idea of this proof is to construct a transcendental functiong(z) = ∑
n BnPn(z), which

is integer-valued at all integers and has small non-zero coefficientsBn.
Let f (z) be an arbitrary entire function. The interpolation coefficientsAn−1 (n ∈ N)

with respect to the above sequence(z�)�∈N are given by

An−1 = 1

2�i

∮
f (�) d�
Pn(�)

= 1

2�i

∮
f (�) d�∏l

�=1(� − w�)
e�

=
l∑

�=1

e�−1∑
	�=0

(−1)	�
f (e�−1−	�)(w�)

(e� − 1− 	�)!
∑

(
1,...,
l )∈Nl
0


1+···+
l=	�+
�

l∏
�′=1
�′ �=�

(
e�′+
�′−1


�′

)
(w� − w�′)e�′+
�′ , (5)

where the path of integration containsw1, . . . , wl . Here the right-hand side is a linear
form in then derivativesf (��)(w�) with � ∈ {1, . . . , l} and�� ∈ {0, . . . , e� − 1}. Their
coefficients are explicitly given rational numbers not depending onf .
From now on, let us supposee1 = · · · = el−1 = s andel ∈ {1, . . . , s}. The factor of

f (el−1)(wl) in (5) is (el − 1)!−1∏l−1
�′=1

(wl − w�′)−s and thus we have

(el − 1)!
l−1∏
�′=1

(wl − w�′)sAn−1

=
l−1∑
�=1

s−1∑

=0

a�,
f
(s−1−
)(w�) +

el−1∑

=1

al,
f
(el−1−
)(wl) + f (el−1)(wl)

with rationala�,
, again independent off . Next we inductively define, in the order indicated
below, an infinite sequence1

g1,0, . . . , g1,s−1, g2,0, . . . , g2,s−1, . . . , gl,0, . . . , gl,el−1, . . . (6)

of rational integers by the conditions

0<

l−1∑
�=1

s−1∑

=0

a�,
g�,s−1−
 +
el−1∑

=1

al,
gl,el−1−
 + gl,el−1�1. (7)

Clearly, forl = 1, el = 1 (i.e.n = 1) this meansg1,0 := 1. Herewith we put

Bn−1 := 1

(el − 1)!∏l−1
�=1(wl − w�)

s

×
( l−1∑

�=1

s−1∑

=0

a�,
g�,s−1−
 +
el−1∑

=1

al,
gl,el−1−
 + gl,el−1

)
(8)

for eachn ∈ N. In particular, we remarkBn−1 �= 0 for eachn ∈ N.

1 To see the truth of Remark 2, having chosen allg�,
 in (6) arisingbeforegl,el−1, we selectgl,el−1 in such a
way that the sum in (7) satisfies 0< |the sum|�1. This leads to exactly two distinct choices forgl,el−1.
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With theseBn−1 we define

gs(z) :=
∞∑
n=1

Bn−1Pn−1(z)

and we assert that thisgs is good for our theorem. Having shown thatgs(z) is entire and
satisfies (ii), clearly (i) is true as well sinceg(
)s (w�) = g�,
 ∈ Z for � = 1,2, . . . and

 ∈ {0, 1, . . . , s − 1}. Since noBn−1 vanishes,gs cannot be a polynomial.
To carry out this program we first estimateBn−1 from (7), (8) and the postponed Lemma

1, leading to

|Bn−1|�
l−1∏
�=1

|wl − w�|−s = (l − 1)!−s . (9)

Next letk (= k(n)) be defined by 2k − 1 < l�2k + 1 or, equivalently,k := �l/2�. From
our above choice of the interpolation sequence(z�) and from (4) we deduce

Pn−1(z) =
l∏

�=1

(z−w�)
e′
� = (z(z2−1) · · · (z2−(k−1)2))s

l∏
�=2k

(
z−(−1)�

⌊�
2

⌋)e′
�

(10)

with e′
� := e� for � = 1, . . . , l − 1, ande′

l := el − 1, cf. (3).
To get the precise estimate in (ii) we distinguish the two cases:l = 2k andl = 2k + 1.
Casel = 2k: From (9) and (10), using Stirling’s formula and the (again postponed)

Lemma 2, in the notation

�k(r) :=
k∏

j=1

(r2 + j2), (11)

we find on|z| = r:

|Bn−1Pn−1(z)|<
( √

2k e2k√
2�(2k)2k

)s

�k(r)
srs

(r + k)e
′
2k

(r2 + k2)s

<

( √
k√

�4kk2k

)s

exp

{
s

(
k log(r2 + k2) + 2r arctan

k

r

+2+ log

(
1+ k2

r2

))}
rs

(r + k)e
′
2k

(r2 + k2)s

= �−s/2ks/2 exp

{
srh

(
k

r

)
+ 2s + log

(
1+ k2

r2

)s}
rs

(r + k)e
′
2k

(r2 + k2)s
.

(12)

Here the functionh : R+ → R is defined by

h(t) := t log(1+ t−2) − t log 4+ 2 arctant.

We computeh′(t) = log
(
(1+ t−2)/4

)
and this expression vanishes inR+ exactly if t =

1/
√
3. We haveh′(t) > 0 if 0 < t < 1/

√
3 andh′(t) < 0 if t > 1/

√
3. Moreover,

h(1/
√
3) = 2 arctan(1/

√
3) = �/3,h(t) ↓ 0 ast ↓ 0, andh(t) ↓ −∞ ast ↑ +∞.
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Thus, on|z| = r, we get from (12)∣∣∣∣∣
∑
n∈N

k �10r

Bn−1Pn−1(z)

∣∣∣∣∣�
(

e2√
�

)s

exp

(
�
3
sr

)
1

r
11s

∑
n∈N

k �10r

ks/2. (13)

Since the sum on the right-hand side is less than(10r)1+s/2s, where the factors takes into
account that at mosts distinctn can lead to the samel (ork, in the case under consideration),
inequality (13) yields ∣∣∣∣∣

∑
n∈N

k �10r

Bn−1Pn−1(z)

∣∣∣∣∣�Cs
1r

s/2 exp

(
�
3
sr

)
(14)

on |z| = r. Clearly,C1 > 0 can be written down explicitly.
We finally have to consider the contribution of thosenwith k > 10r. Starting again from

(12) we see

|Bn−1Pn−1(z)|<
(

e2√
�

)s

ks/2 exp

{
sk

(
log

(
1+

( r

k

)2)− log 4+2
arctan(k/r)

k/r

)}

×(r + k)e
′
2k

rs

<

(
11e2

10
√

�

)s

k3s/2 exp(−sk), (15)

since

log

(
1+

( r

k

)2) − log 4+ 2
arctan(k/r)

k/r
< log

101

100
− log 4+ �

10
= −1.06218476. . .

for thek’s under consideration. Sincek > 10r impliesk > 10 we deduce from (15)

|Bn−1Pn−1(z)| < e−sk/2

on |z| = r if n is such that the correspondingk satisfiesk > 10r. Thus we have∣∣∣∣∣
∑
n∈N
k>10r

Bn−1Pn−1(z)

∣∣∣∣∣ < s
∑
k>10

e−sk/2 < 2e−5s.

This combined with (14) yields (ii) in Theorem 1 provided we are in the casel = 2k.
Thecasel = 2k + 1 will be left to the reader, the arguments being rather similar.

1.2. Postponed lemmas

Here we include two simple lemmas, which we used in the above proof.

Lemma 1. If w� = (−1)���/2� for � = 1,2, . . ., then

l−1∏
�=1

|wl − w�| = (l − 1)! .
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Proof. From the definition ofw� we see

|wl − wl−2k| =
∣∣∣∣
⌊
l

2

⌋
−

⌊
l − 2k

2

⌋∣∣∣∣ = k

for k = 1, . . . , �(l − 1)/2�, and

|wl − wl+1−2k| =
⌊
l

2

⌋
+

⌊
l + 1− 2k

2

⌋
=

⌊
l

2

⌋
+

⌊
l + 1

2

⌋
− k = l − k

for k = 1, . . . , �l/2�. Both equalities together imply

l−1∏
�=1

|wl − w�| =
l−1∏
�=1

�≡l (mod 2)

|wl − w�|
l−1∏
�=1

��≡l (mod 2)

|wl − w�|

=
⌊
l − 1

2

⌋
!(l − 1) · · ·

(
l −

⌊
l

2

⌋)
,

from which our assertion follows.�

The following lemma is a variant of Lemma2.8 inWelter’s dissertation[We]. Butwhereas
Welter uses properties of the
-function, our proof leans on simpler arguments, namely just
on partial summation.

Lemma 2. If, for r ∈ R+ andk ∈ N, �k(r) is defined by(11), then one has

log �k(r) < k log(r2 + k2) − 2k + 2r arctan
k

r
+ 2+ log

(
1+

(k
r

)2)
.

Proof. By partial summation we get

log �k(r)=
k∑

j=1

log(r2 + j2) = k log(r2 + k2) −
k∫

1

�t� 2t dt

r2 + t2

= k log(r2 + k2) − 2

k∫
1

t2 dt

r2 + t2
+ 2

k∫
1

t{t} dt
r2 + t2

,

where{t} := t − �t�. Thus,

log �k(r) = k log(r2 + k2) − 2(k − 1)+ 2r2
k∫

1

dt

r2 + t2
+ 2

k∫
1

t{t} dt
r2 + t2

.

Since the first integral is bounded above by1
r
arctan k

r
, and the second by log

(
1+ (k/r)2

)
,

we get our inequality as asserted.�
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2. Proof of Theorem 2

2.1. Denominator lemma

Let s�2, and leta1, a2, . . . , as andb1, b2, . . . , bs be non-negative integers satisfying
the conditionaj �bk for all subscriptsj, k = 1,2, . . . , s. To these numbers we assign the
collectionN = {bj − ak : j, k = 1,2, . . . , s}, in which all appearances of numbers are
counted with their multiplicities.
Define the rational function

R(z) =
s∏

j=1

(bj − aj )!
(z − aj )(z − aj − 1) · · · (z − bj )

=
s∏

j=1

(bj − aj )! 
(z − bj )


(z − aj + 1)

and consider its partial-fraction decomposition

R(z) =
∑
k∈P

 (k)∑
l=1

Alk

(z − k)l
,

whereP = {min aj , . . . ,max bj } denotes the set of the poles ofR(z) and (k) stands for
the order of the pole atz = k. By Dn denote the least common multiple of the numbers
1,2, . . . , n and setD0 = 1 for completeness. The following result is a particular case of
[Ne, Proposition 4].

Lemma 3.Letn1�n2�n3� · · · be the ordered version of the collectionN . Then,for all
k ∈ P and any integerl with 1� l� (k), we have the inclusion

Dn1Dn2 · · ·Dns−1Alk ∈ Z. (16)

Proof. We will show inclusion (16) in more general settings by requiring the para-
metersa1, . . . , as andb1, . . . , bs to satisfy the inequalitiesaj �bj for j = 1, . . . , s only.
Clearlyn1�n2� · · · �ns−1�0, sinceat leasts numbers inN are non-negative:bj−aj �0
for j = 1, . . . , s.Weproceed theproof by induction on thequantityc = ∑s

j=1(bj −aj )�0.
The inductive basec = 0 corresponds to the caseaj = bj for all j = 1, . . . , s. We fix

k ∈ {a1, . . . , as} andl� (k), and assume (by rearranging the subscripts if necessary) that
as− (k)+1 = · · · = as = k, i.e., aj �= k for j = 1,2, . . . , s0 with s0 = s −  (k). The
standard procedure of determining the partial-fraction coefficients gives

Alk = 1

( (k) − l)!
(

d

dz

) (k)−l

(R(z)(z − k) (k))
∣∣
z=k

= 1

( (k) − l)!
(

d

dz

) (k)−l( s0∏
j=1

1

z − aj

)∣∣∣∣
z=k

= (−1)s0
∑

l1+···+ls0= (k)−l

s0∏
j=1

1

(k − aj )
lj+1 . (17)
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It remains to note that for allj = 1, . . . , s0 we have

1

(k − aj )
lj+1 = 1∏s0+lj+1

i=s0+1 (bi − aj )
if k > aj = bj ,

1

(k − aj )
lj+1 = (−1)lj+1

∏s0+lj+1
i=s0+1 (bj − ai)

if k < bj = aj

and the total amount of differencesbi − aj , bj − ai ∈ N , required for each summand in
(17), is equal to

∑s0
j=1(lj + 1) =  (k)− l + s0 = s − l�s − 1. This proves inclusion (16)

in the casec = 0.
If c > 0, then the inequalityaj < bj holds for at least one subscriptj , for j = 1, say.

Multiplying both sides of the identity

1 = z − a1

b1 − a1
− z − b1

b1 − a1

by R(z), we obtain the relationR(z) = R(a1 + 1;z) − R(b1 − 1;z), where the records
a1 + 1 andb1 − 1 mean the changes of the corresponding parameters only. It can be easily
seen that the numbers in the collectionsN for the rational functions on the left-hand side of
the relation do not exceed the corresponding numbers in the collectionN for the right-hand
side, but the value ofc forR(a1+1;z) andR(b1−1;z) is by 1 less than forR(z). Therefore,
we may apply the inductive step arguments to arrive at (16), and the lemma follows.�

The following fact will be rather important to us: the collectionN and the collection
{n1, n2, . . . , ns−1} of its s − 1 successive maxima are invariant under any rearrangement
of the parameters in the groupb1, b2, . . . , bs (and/or in the groupa1, a2, . . . , as).

2.2. Settings

General shapes of interpolation polynomials are as follows (cf. Section 1):

Qn(z) =
s∏

j=1

(z − aj )(z − aj − 1) · · · (z − bj ), Qn(z) | Qn+1(z),

where degQn = n and allaj ’s andbj ’s are rational integers. In[Se, Hilfsatz II], it is shown
that if bj = O(n) asn → ∞ and the interpolation coefficients

An = 1

2�i

∮
g(z)

Qn(z)
dz

vanish for alln�n0, theng(z) is a polynomial. Moreover, it is sufficient to prove that
An� = 0 for all ���0, where the subsequence{n�}�=0,1,... ⊂ N0 is sufficiently dense,
namely, 0< n�+1−n��const. (Indeed, all analytic estimates for interpolation coefficients,
like (19) below, have such form that if|An� |�C, then|An|�C for all n�n�.)

Letn be an increasing parameter in the construction below.We fix the tuple of parameters
� = (�1, . . . , �s) and� = (�1, . . . ,�s) satisfying the condition

�j ��k �0 for all 1�j, k�s
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and take
aj = �j n, bj = �j n, j = 1,2, . . . , s.

In these settings the total degree of the polynomial

Qn(z) =
s∏

j=1

(z − aj )(z − aj − 1) · · · (z − bj )

is
∑s

j=1(bj − aj + 1) = n
∑s

j=1(�j − �j ) + s, but since gaps of length
∑s

j=1(�j − �j )
are allowed, it is enough to show that

Bn = 1

2�i

∮

n

g(z)

Qn(z)
dz

vanishes forn�n0 (that impliesg(z) ∈ C[z]). Here
n denotes a contour with interior
including all zeros of the polynomialQn(z).

2.3. Arithmetic part

In order to apply Lemma 3, take�1��2� · · · ��s−1 to be the firsts − 1 successive
maxima in the collectionN = {�j − �k : 1�j, k�s} and set�n = ∏s−1

j=1D�j n. If

�n

∏s
j=1((�j − �j )n)!

Qn(z)
=

∑
k∈P

 (k)∑
l=1

Alk

(z − k)l
,

then allAlk are integers by Lemma 3. For any permutation� of the set{1, . . . , m}, we set

�(�) =
s∏

j=1

((��(j) − �j )n)!

and use the group-structure arithmetic method in the followingmanner.Again from Lemma
3 and due to the symmetry of our construction it follows that, for any�, the coefficients
A

(�)
lk in the decomposition

∑
k∈P

 (k)∑
l=1

A
(�)
lk

(z − k)l
= �n

�(�)
Qn(z)

= �(�)
�(id)

∑
k∈P

 (k)∑
l=1

Alk

(z − k)l

are integers. Therefore, if for each primep,

�p = max
�

{
ordp

�(id)

�(�)

}
�0

and�n = ∏
p p�p , then the coefficientsA′

lk = Alk�−1
n in the decomposition

�n�−1
n

∏s
j=1((�j − �j )n)!

Qn(z)
=

∑
k∈P

 (k)∑
l=1

A′
lk

(z − k)l
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areall integers. For primesp >
√
Cn (whereC = max�j , say) theprocedureof algorithmic

determining�p is known: take

�(x) = max
�

( s∑
j=1

�(�j − �j )x� −
s∑

j=1

�(��(j) − �j )x�
)

; (18)

then�p = �(n/p) (since ordpN ! = �N/p� for any primep >
√
N ). The function�(x) is

1-periodic and by application of the Chudnovsky–Rukhadze–Hata arithmetic scheme (see,
e.g.,[Zu, Lemma 4.4]), we get

lim
n→∞

log �n

n
=

1∫
0

�(x) d�(x),

where�(x) is the logarithmic derivative of the gamma function. On the other hand, the
prime number theorem yields

lim
n→∞

log D�j n

n
= �j , j = 1,2, . . . , s − 1.

Following the lines of the proof of Hilfsatz V in[Se, p. 166], we see that the numbers

B ′
n =Bn(s − 1)!�n�−1

n

s∏
j=1

((�j − �j )n)!

= 1

2�i

∮

n

g(z)
∑
k∈P

 (k)∑
l=1

(s − 1)!A′
lk

(z − k)l
dz =

∑
k∈P

 (k)∑
l=1

(s − 1)!
(l − 1)!A

′
lkg

(l−1)(k)

are all integers since (k)�s for eachk ∈ P.

2.4. Some ‘complex’ analysis

Take
n = {z : |z| = �n} for some constant���0 = max �j > 0. Then

|Bn|� �n
2�

�∫
−�

|g(z)|
Qn(z)

d�� C1ne
��n

Qn(�n)
, (19)

where� denotes the type of the entire functiong(z) (i.e., |g(z)| < Ce�|z|). By Stirling’s
asymptotic formula, we have

((�j − �j )n)!
(�n − �j n)(�n − �j n − 1) · · · (�n − �j n)

= 
((� − �j )n)
((�j − �j )n + 1)


((� − �j )n + 1)

∼ C2(�j ,�j , �)n
−1/2

(
(� − �j )

�−�j (�j − �j )
�j−�j

(� − �j )�−�j

)n

, j = 1, . . . , s,

asn → ∞. Finally,

lim sup
n→∞

log |B ′
n|

n
�� = (�1 + · · · + �s−1) −

1∫
0

�(x) d�(x) + min
x��0

f (x),
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where

f (x) = �x+
s∑

j=1

((x−�j ) log(x−�j )−(x−�j ) log(x−�j )+(�j−�j ) log(�j−�j )). (20)

If � < 0, we automatically obtainB ′
n = 0 (sinceB ′

n ∈ Z) and henceBn = 0 for all
sufficiently largen. The minimum of the functionf (x) is achieved at the pointx = x0,
which satisfiesf ′(x0) = 0 with

f ′(x) = � +
s∑

j=1

(log(x − �j ) − log(x − �j )).

For this pointx = x0 we obtain

min
x��0

f (x) = f (x0) = f0(x0),

where

f0(x)= f (x) − xf ′(x)

=
s∑

j=1

(�j log(x − �j ) − �j log(x − �j ) + (�j − �j ) log(�j − �j )). (21)

Since

f ′
0(x) =

s∑
j=1

(
�j

x − �j
− �j

x − �j

)
= −

s∑
j=1

(�j − �j )x

(x − �j )(x − �j )
< 0

for x��0, the functionf0(x) decreases forx��0. Suppose that we determine the (unique)
pointx = x1 > �0 such that

f0(x1) = −(�1 + · · · + �s−1) +
1∫

0

�(x) d�(x).

Then taking

�̃ = −
s∑

j=1

(log(x1 − �j ) − log(x1 − �j )),

we obtain that the condition� < �̃ yields� < 0.

2.5. Proof of Theorem 2

Applying the above scheme for the casess = 2, 3, . . . ,9, we get the values̃� in (2)
corresponding to the following (optimal) tuples of the parameters:

s = 2 : (�;�) = (0, 1;9,10),
s = 3 : (�;�) = (0, 1,2; 11,12, 13),
s = 4 : (�;�) = (0, 1,2, 3;17,18,19,20),
s = 5 : (�;�) = (0, 1,2, 3,4; 22, 23,24, 25,26),
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s = 6 : (�;�) = (0, 1,2, 3,4, 5;27,28,29,30, 31,32),
s = 7 : (�;�) = (0, 1, . . . ,6;33,34, . . . ,39),
s = 8 : (�;�) = (0, 1, . . . ,7;38,39, . . . ,45),
s = 9 : (�;�) = (0, 1, . . . ,8;42, 43, . . . ,50).

Alsonote thatGelfond’sestimate (1) corresponds to thechoice(�;�) = (0, . . . ,0; 1, . . . ,1)
in our notation.
To proceed with the second (general ins) assertion of Theorem 2, fix the collection

(�∗;�∗) = (�∗
1, . . . , �

∗
m;�∗

1, . . . ,�
∗
m) for somem�2, with the additional restrictions

�∗
1� · · · ��∗

m < �∗
1� · · · ��∗

m,

�∗
1 − �∗

1 = · · · = �∗
m − �∗

m = 
∗ (22)

to simplify the general consideration. Set�∗ = �∗
m − �∗

1, the functionsf ∗(x) andf ∗
0 (x)

defined in (20) and (21) (with� replaced by�∗) for the collection(�∗;�∗), and compute
the arithmetic functions�∗

l (x) in (18) for the cut collections(�∗
1, . . . , �

∗
l ;�∗

1, . . . ,�
∗
l ),

l = 0, 1, . . . , m, respectively (so that�∗
0(x) and�∗

1(x) are identically zero) together with
the corresponding arithmetic contributions

I ∗
l =

1∫
0

�∗
l (x) d�(x), l = 0, 1, . . . , m.

Assume also the condition

�∗ � l

m
I ∗
m − I ∗

l , l = 0, 1, . . . , m (23)

(for l = 0 it clearly holds).
Our (close to optimal) choice of the collection(�;�) for anys�2 is as follows:

�j = �∗
j (modm), �j = �∗

j (modm) for j = 1, . . . , s.

Write s = km + l, where 0� l�m − 1. Clearly, we get�j ��∗ for j = 1, . . . , s − 1 and
�(x)�k�∗

m(x) + �∗
l (x), and by (23)

(�1 + · · · + �s−1) −
1∫

0

�(x) d�(x)�(s − 1)�∗ − (kI ∗
m + I ∗

l )�
s

m
(m�∗ − I ∗

m). (24)

Denote byx∗
1 > �0 = max�∗

j the unique solution of the equationf ∗
0 (x) = −(m�∗ − I ∗

m)

and set

�̃
∗ = −

m∑
j=1

(
log(x∗

1 − �∗
j ) − log(x∗

1 − �∗
j )

)
.

As we have already seen, the condition�∗ < �̃
∗
implies

�∗ := m�∗ − I ∗
m + min

x��0
f ∗(x) < 0. (25)



P. Bundschuh, W. Zudilin / Journal of Approximation Theory 130 (2004) 162–176 175

Restrictions (22) imply that for any realx > �0 the sequence of them real numbers

hj (x) = (x − �∗
j ) log(x − �∗

j ) − (x − �∗
j ) log(x − �∗

j ) + (�∗
j − �∗

j ) log(�
∗
j − �∗

j )

increases2 with j = 1, . . . , m. Therefore,

l∑
j=1

hj (x)�
l

m

m∑
j=1

hj (x) = l

m

(−�∗x + f ∗(x)
)

for x > �0

and, as a corollary,

f (x)� s

m
f ∗(x) for x > �0, (26)

provided that

�� s

m
�∗. (27)

Lemma 4. If two real functionsg1(x) andg2(x) satisfyg1(x)�g2(x) for x ∈ X ⊂ R and
both functions admit their minima onX, then

min
x∈X g1(x)� min

x∈X g2(x).

We omit the proof of this clear observation and write the following consequence of it and
relation (26):

min
x��0

f (x)� s

m
min
x��0

f ∗(x),

hence by (24)

� = (�1 + · · · + �s−1) −
1∫
0

�(x) d�(x) + min
x��0

f (x)� s

m
�∗ (28)

provided that (27) holds. Finally, from (25) and (28) we obtain that if�� s
m

�̃
∗
, then� < 0

and henceg(z) with t (g) = �� s
m

�̃
∗
should be a polynomial.

The choice(�∗,�∗) = (0, 1,2, 3,4; 39,40, 41,42, 43) gives �∗ = 43 and 1
5 �̃

∗ =
0.32766348. . . . This completes the proof of Theorem 2.

3. Concluding remarks

Problems similar to those considered in this work are also known in the case of entire
functions taking integer values with their derivatives at the pointsz = qn, n = 0, 1,2, . . .;
q ∈ Z \ {0,±1} is fixed. The corresponding estimates from both below and above for a

2Hint: prove that the functionh(�) = (x − �) log(x − �) − (x − � + 
∗) log(x − � + 
∗) increases with�
changing from 0 tox; realx is fixed.
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q-analogue of the constant�̃s were first established by Gelfond in[Ge2]. Later, the upper
bound was considerably improved in[BS]. However, no results sharpening the lower bound
appeared, and we would like to conclude this paper by saying that theq-analogue of the
arithmetic method used in the proof of Theorem 2 (including Selberg’s method in[Se]as a
particular case) does not allow one to improve this lower bound.
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